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Abstract. Schubert polynomials were introduced by A. Lascoux and M. P. Schützenberg
to describe the cohomology ring of complete flag varieties. The famous Schur
functions are special cases of Schubert polynomials. In this work we study
generalization of Murnaghan-Nakayama rule for Schubert polynomials. We
found a symmetric formula for this rule using the Fomin-Kirillov algebra.

Introduction

The cohomology ring of the complete flag variety H∗(Fℓn) admits a special linear
basis {σw} indexed by permutations on n elements. The elements of the basis are
called Schubert classes. For any u, v ∈ Sn, we have

σuσv =
󰁛

w∈Sn

cwu,vσw

for some cwu,v ∈ R, u, v, w ∈ Sn. The numbers cwu,v are called the structure con-
stants for H∗(Fℓn). By algebro-geometric reasons, the structure constants are
always non-negative integers. To provide a combinatorial interpretation for these
structure constants is a long standing open problem in algebraic combinatorics.
The constants are generalizations of famous Littlewood-Richardson coefficients
([9]), which correspond to the case when both permutations are Grassmannian of
the same descent.

Study of cohomology rings of flag varieties started long ago and the first multi-
plication rule was constructed by D. Monk [12] in 1959. I. N. Bernstein, I. M. Gelfand,
S. I. Gelfand [1] and M. Demazure [3] gave a description of the cohomology ring of
the complete flag variety Fℓn in 70th. Later in 1982 A. Lascoux and M. P. Schützenberg [7,
8] defined Schubert polynomials recursively using divided differences operators. For
the polynomial ring Q[x1, x2, x3, . . .], the i-th divided differences operator is given
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by

∂if :=
f − sif

xi − xi+1
.

It is easy to see that these operators send polynomials to polynomials, furthermore,
if f has integer coefficients, then ∂if also has integer coefficients.

Definition 1 (c.f. [7, 8]). For a permutation w0 = (n, n−1, . . . , 1) ∈ Sn, its Schubert
polynomial is given by

Sw0 = xn−1
1 xn−2

2 · · ·x1
n−1 ∈ Q[x1, x2, . . .].

For a permutation w ∈ Sn s.t. w ∕= w0,

Sw = ∂iSwsi for i such that ℓ(wsi) = ℓ(w) + 1.

These polynomials are well defined and the definition above agrees with the
following inclusion S1 ⊂ S2 ⊂ S3 ⊂ . . . ⊂ SN.

Theorem 1 (c.f. [7, 8]). For any u ∈ SN, its Schubert polynomial Su is well defined
and Su is a homogeneous polynomial of degree ℓ(u).

The set {Su, u ∈ SN} of all Schubert Polynomials is a linear basis of Q[x1, x2, x3, . . .].

The closed formula for each Schubert polynomials in terms of the reduced
decompositions was given by S. Billey, W. Jockusch, and R. Stanley [2] and using
rc-graphs by S. Fomin and A. N. Kirillov [4], see also [6]. Schubert polynomials are
generalizations of famous Schur functions, see the book [10].

Since {Su, u ∈ SN} is a linear basis of Q[x1, x2, x3, . . .], we have unique
coefficients cwu,v, u, v, w ∈ SN such that, for any u, v ∈ SN,

SuSv =
󰁛

w∈SN

cwu,vSw.

These coefficients cwu,v, u, v, w ∈ SN are exactly the structure constants for flag
varieties.

The following rule was proven for the original problem.

Theorem 2 (Monk’s rule, c.f. [12]). For u ∈ SN and k ∈ N, we have

SuSsk = Su · (x1 + x2 + . . .+ xk) =
󰁛

a≤k<b: ℓ(uta,b)=ℓ(u)+1

Suta,b
,

where ta,b is a transposition of a and b.

Later Pieri’s rule and a more general rule for rim hooks were given by
F. Sottile in 1996 [14]. K. Mészáros, G. Panova, and A. Postnikov in 2014 [11]
rewrote and gave a new prove of the rule for rim hooks (and proved that this
way works for hooks with extra square) in terms of Fomin-Kirillov algebra [5]. We
will define Fomin-Kirillov algebra and formulate Pieri’s rule in the next section.
There are also some other rules, but unfortunately they have restrictions on both
permutations. A. Morrison and F. Sottile found the Murnaghan-Nakayama rule for
Schubert polynomials, see [13] and below we develop Murnaghan-Nakayama rule
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in Fomin-Kirillow algebra. Our formula has extra symmetries unlike Morrison-
Sottile’s rule and it is better in sense of Bruhat orders, see Proposition 2.

1. Fomin-Kirillov algebra
Denote by FKN the algebra with generators [i, j], where i ∕= j ∈ N and relations

• [i, j] = −[j, i];
• [i, j]2 = 0;
• [i, j][k, ℓ] = [k, ℓ][i, j] for distinct i, j, k, ℓ;
• [i, j][j, k] + [j, k][k, i] + [k, i][i, j] = 0.

The last equation is know as associate Yang-Baxter equation. The classical
FKn is generated only by [i, j], i, j ∈ [n]. The Fomin-Kirillov algebra acts on
Schubert polynomials (on the cohomology ring) as the following one side operators

Sw[a, b] =

󰀻
󰁁󰀿

󰁁󰀽

Swta,b
if ℓ(wta,b) = ℓ(w) + 1 and a < b,

−Swta,b
if ℓ(wta,b) = ℓ(w) + 1 and a > b,

0 otherwise.

We define Dunkl elements in FKN as

θk = −
󰁛

i<k

[i, k] +
󰁛

j>k

[k, j] =
󰁛

i

[k, i].

Dunkl elements are commute pairwise, i.e., θiθk = θkθi, see [5]. As corollary of
Monk’s rule we get

Proposition 1 (c.f. [5]). For any permutation u ∈ Sn and k ∈ N, we have

Suxk = Suθk.

Theorem 3 (Pieri’s rule [11]). For u ∈ SN and k,m ∈ N, we have

Su · hk(x1, x2, . . . , xm) = Su ·

󰀳

󰁃
󰁛

i1≤i2≤...≤ik≤m

xi1xi2 · · ·xik

󰀴

󰁄 =

=
󰁛

a1≤...≤ak≤m
m<b1,...,bk are distinct

Su[a1b1][a2b2] · · · [akbk]

and

Su · ek(x1, x2, . . . , xm) = Su ·

󰀳

󰁃
󰁛

i1<i2<...<ik≤m

xi1xi2 · · ·xik

󰀴

󰁄 =

=
󰁛

a1,...,ak≤m are distinct
m<b1≤...≤bk

Su[a1b1][a2b2] · · · [akbk].

In this paper we extend this approach and present the formula for Murnaghan-
Nakayama rule in Fomin-Kirillov algebra.
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Theorem 4 (Murnaghan–Nakayama rule). For u ∈ SN and k,m ∈ N, we have

Su·pk(x1, x2, . . . , xm) = Su · (xk
1 + xk

2 + . . .+ xk
m) =

=
󰁛

P is a Dyck path of length 2k

(−1)ue(P )
󰁛

a1,...,aue(P )+1≤m
b1,...,bk−ue(P )>m

are distinct

SuMP (a, b).

The first summation is overall Dyck paths and the second summation is overall
distinct indexes a1, . . . , aue(P )+1 ≤ m < b1, . . . , bk−ue(P ) corresponding to moves
up on even and odd places resp. and MP (a, b) is a product of [ai, bj ] as in the
picture.

It is clear that our rule is symmetric on indexes [m] and on indexes {m +
1,m+2,m+3, . . .}, which should help in a construction of such a rule for the case
of Schubert polynomials times Schur functions. Our rule is impossible to simplify,
see Proposition 2.

Proposition 2. For u, v ∈ SN and k,m ∈ N, there is at most one Dyck path with
indexes a1, . . . , aue(P )+1 ≤ m < b1, . . . , bk−ue(P ) such that SuMP (a, b) = Sv.

In particular, Supk(x1, x2, . . . , xm) =
󰁓

±Sv, where summation by some
permutations.
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